Измерение коэффициента нелинейных искажений. Измерение нелинейных искажений Максимальная кратковременная мощность

Для проведения этого анализа необходимо следующее:

1. Изменить входной источник сигнала AC Voltage на Pulse Voltage и установить в нем параметры приведенные на рисунке.

2. В самом анализе следует установить следующее:


Рис. 11

Проанализировав полученный график оценим искажение импульса:

1) Выброс фронта?ф~1 В, это не превышает 4% от U ном и является неплохим показателем качества данного усилителя.

2) Скорость нарастания выходного напряжения?U~ 2 В/мкс и время нарастания

t Ф ~ 10 мксек, что в совокупности составляет неплохой показатель качества нарастания выходного сигнала в данном усилителе.

3) Так же усилитель имеет неплохие характеристики заднего фронта импульса, которые схожи с характеристиками переднего фронта.

Коэффициент гармоник

Нелинейные искажения вызваны прохождением сигнала через элементы, имеющие нелинейные характеристики, например, через транзисторы, вследствие чего искажается форма колебания и меняется его спектральный состав. Поскольку усилитель вносит нелинейные искажения, то на его выходе появляются новые компоненты (гармоники), отсутствующие на входе, что вызывает искажение тембра звука. Количественной оценкой нелинейных искажений является коэффициент гармоник Кг:

где Р г -- суммарная мощность гармоник; P 1 -- мощность полезного сигнала.

Из всех гармоник наиболее интенсивны вторая и третья. Остальные имеют гораздо меньшую мощность и мало влияют на форму выходного сигнала.

Коэффициент гармоник многокаскадного усилителя обычно близок к сумме коэффициентов гармоник отдельных каскадов. Поэтому если нелинейные искажения в предварительных каскадах соизмеримы с искажениями в оконечном каскаде, то общий коэффициент гармоник тракта звуковоспроизведения можно оценить по формуле:

Однако коэффициент К г дает неполное представление о нелинейных искажениях в усилителе, так как он не учитывает сигналы комбинационных частот, образующиеся в результате интерференции между отдельными составляющими сложного колебании. Наиболее заметны нелинейные искажения из-за комбинационных частот, возникающие при подаче на усилитель двух и большего числа синусоидальных сигналов. Особенно заметны комбинационные частоты вида f1--f2, f1--2f2, 2f1--f2, так как они, как правило, не содержатся в спектре даже сложного входного сигнала.

Для высококачественных усилителей часто вводят еще один показатель, характеризующий их нелинейность, -- коэффициент интермодуляционных искажений Ким.и. При измерении Kим.и на вход усилителя подают два гармонических колебания с частотами: f1 = 50... 100 Гц и f 2 = 5... 10 кГц при отношении амплитуд Uвх(f1)/Uвх(f2)=4/1- Коэффициент Ким.и равен отношению амплитуды выходного напряжения разностной частоты f 2 --f 1 к амплитуде выходного напряжения частоты f 1:

Рис. 12.

Допустимое значение Ким.и<0,1 ... 1%.

Нелинейные искажения значительно зависят от амплитуды подаваемого на вход сигнала. На рис. 12 показан характер зависимости коэффициента Кт от мощности на выходе усилителя. Эта кривая является основной характеристикой для оценки нелинейных искажении. Она служит также для определения максимальной полезной мощности усилителя по заданному Кг.

Коэффициент гармоник задается, как правило, для большого уровня входного сигнала. Для транзисторных усилителей мощности характерно увеличение нелинейных искажений при весьма малых уровнях входного сигнала, что вызвано искажениями типа "ступенька" или "центральная отсечка". Поэтому для полной оценки качества усилителя целесообразно контролировать К г также при малых уровнях входных сигналов.

В основном нелинейные искажения возникают в оконечном и предоконечном каскадах. Для оконечных усилителей вносимые нелинейные искажения различны на разных частотах. В области граничных частот полосы пропускания они возрастают (при неизменной амплитуде входного сигнала). Это объясняется реактивным характером сопротивления нагрузки оконечных транзисторов и связанным с этим изменением формы динамической характеристики на крайних частотах полосы пропускания.

Допустимые нелинейные искажения зависят от назначения усилителя. Так, в усилителях ЗЧ, используемых в радиовещании и бытовой звуковоспроизводящей аппаратуре, коэффициент гармоник по ГОСТ 11157--74 должен составлять 1 ... 2%. В высококачественной профессиональной аппаратуре К г <0,05%.

В последние годы резко улучшились параметры высококлассной звуковоспроизводящей аппаратуры. Особенно заметна тенденция к снижению нелинейных искажений. Появились усилители ЗЧ, у которых коэффициент Кг<0,0005%. Достижение чрезвычайно малых нелинейных искажений связано с применением большого количества транзисторов с высоким коэффициентом усиления и установлением глубокой ООС. Последнее обстоятельство приводит к ухудшению динамических (скоростных) характеристик, заключающемуся в том, что резкий скачок напряжения на выходе запаздывает по отношению к вызывающему его скачку на входе. Это приводит к "жесткому", "транзисторному" звучанию, исчезает мягкость, бархатистость звука при субъективном восприятии музыкальной программы.

Проблема заметности коэффициента гармоник в диапазоне 1 ... 0,0005% не имеет однозначного толкования. Можно лишь утверждать, что если получены малые нелинейные искажения, и они достигнуты не за счет ухудшения других параметров усилителя, то это говорит о совершенстве усилительного тракта.

Однако следует отметить, что испытание усилителей со сверхмалыми нелинейными искажениями предъявляет весьма высокие требования к нелинейным искажениям источника испытательных сигналов. Лучшие отечественные звуковые генераторы типа ГЗ-102 обеспечивают К г не менее 0,05%, т. е. имеют тот же порядок, что в нелинейные искажения, вносимые самим усилителем. Разрешающая способность измерителей нелинейных искажений С6-5 также составляет от 0,02 до 0,03%. Поэтому точные измерения сверхмалых нелинейных искажении весьма затруднительны.

Для испытаний сверхлинейных усилителей следует пользоваться прецизионными звуковыми генераторами и анализаторами спектра. Хорошие результаты при оценке сверхмалых нелинейных искажений дает метод компенсации.

Коэффициент нелинейных искажений (КНИ) ​

Ирина Алдошина​

Все электроакустические преобразователи (громкоговорители, микрофоны, телефоны и др.), а также каналы передачи вносят свои искажения в передаваемый звуковой сигнал, то есть воспринимаемый звуковой сигнал всегда не идентичен оригиналу. Идеология создания звуковой аппаратуры, получившая в 60-е годы название High-Fidelity, «высокой верности» живому звуку, в значительной степени не достигла своей цели. В те годы уровни искажений звукового сигнала в аппаратуре были еще очень высокими, и казалось, что достаточно их снизить - и звук, воспроизведенный через аппаратуру, будет практически неотличим от исходного.

Однако, несмотря на успехи в конструировании и развитии технологии, которые привели к значительному снижению уровней всех видов искажений в аудиоаппаратуре, по-прежнему не составляет особого труда отличить натуральный звук от воспроизведенного. Именно поэтому в настоящее время в различных странах в научно-исследовательских институтах, университетах и фирмах-производителях в большом объеме проводятся работы по изучению слухового восприятия и субъективной оценки различных видов искажений. По результатам этих исследований публикуется множество научных статей и докладов. Практически на всех конгрессах AES представляются доклады по этой теме. Некоторые современные результаты, полученные за последние два-три года, по проблемам субъективного восприятия и оценке нелинейных искажений звукового сигнала в аудиоаппаратуре и будут представлены в данной статье.

При записи, передаче и воспроизведении музыкальных и речевых сигналов через аудиоаппаратуру возникают искажения временной структуры сигнала, которые могут быть разделены на линейные и нелинейные.

Линейные искажения изменяют амплитудные и фазовые соотношения между имеющимися спектральными компонентами входного сигнала и за счет этого искажают его временную структуру. Такого рода искажения субъективно воспринимаются, как искажения тембра сигнала, и поэтому проблемам их снижения и субъективным оценкам их уровня уделялось очень много внимания со стороны специалистов на протяжении всего периода развития звукотехники.

Требование к отсутствию линейных искажений сигнала в аудиоаппаратуре может быть записано в форме:

Y(t) = K·x(t - T), где x(t) - входной сигнал, y(t) - выходной сигнал.

Это условие допускает только изменение сигнала в масштабе с коэффициентом К и его сдвиг во времени на величину Т. Оно определяет линейную связь между входным и выходным сигналами и приводит к требованию, чтобы передаточная функция H(ω), под которой понимается частотно-зависимое отношение комплексных амплитуд сигнала на выходе и на входе системы при гармонических воздействиях, была постоянная по модулю и имела линейную зависимость аргумента (то есть фазы) от частоты | H(ω) | = К, φ(ω) = -T·ω. Поскольку функция 20·lg | H(ω) | называется амплитудно-частотной характеристикой системы (АЧХ), а φ(ω) - фазо-частотной характеристикой (ФЧХ), то обеспечение постоянного уровня АЧХ в воспроизводимом диапазоне частот (снижение ее неравномерности) в микрофонах, акустических системах и др. является главным требованием для улучшения их качества. Методы их измерений введены во все международные стандарты, например, IEC268-5. Пример АЧХ современного контрольного агрегата фирмы Marantz с неравномерностью 2 дБ показан на рисунке 1.


АЧХ контрольного монитора фирмы Marantz

Следует отметить, что такое снижение величины неравномерности АЧХ является огромным достижением в конструировании аудиоаппаратуры (например, контрольные мониторы, представленные на выставке в Брюсселе в 1956 году, имели неравномерность 15 дБ), которое стало возможным в результате применения новых технологий, материалов и методов проектирования.

Влияние неравномерностей АЧХ (и ФЧХ) на субъективно воспринимаемое искажение тембра звучания достаточно детально исследовано. Обзор основных полученных результатов постараемся сделать в дальнейшем.

Нелинейные искажения характеризуются появлением в спектре сигнала новых составляющих, отсутствующих в первоначальном сигнале, количество и амплитуды которых зависят от изменения входного уровня. Появление дополнительных составляющих в спектре обусловлено нелинейной зависимостью выходного сигнала от входного, то есть нелинейностью передаточной функции. Примеры такой зависимости показаны на рисунке 2.


Различные типы нелинейных передаточных функций в аппаратуре

Причиной нелинейности могут являться конструктивные и технологические особенности электроакустических преобразователей.

Например, в электродинамических громкоговорителях (рисунок 3) к числу основных причин относятся:


Конструкция электродинамического громкоговорителя

Нелинейные упругие характеристики подвеса и центрирующей шайбы (пример зависимости гибкости подвесов в громкоговорителе от величины смещения звуковой катушки показан на рисунке 4);


Зависимость гибкости подвеса от величины смещения звуковой катушки

Нелинейная зависимость смещения звуковой катушки от величины приложенного напряжения из-за взаимодействия катушки с магнитным полем и из-за тепловых процессов в громкоговорителях;
- нелинейные колебания диафрагмы при большой величине воздействующей силы;
- колебания стенок корпуса;
- эффект Доплера при взаимодействии различных излучателей в акустической системе.
Нелинейные искажения возникают практически во всех элементах звукового тракта: микрофонах, усилителях, кроссоверах, процессорах эффектов и т. д.
Представленная на рисунке 2 зависимость между входным и выходным сигналами (например, между приложенным напряжением и звуковым давлением для громкоговорителя) может быть аппроксимирована в виде полинома:
y(t) = h1·x(t) + h2·x2(t) + h3·x3(t) + h4·x4(t) + … (1).
Если на такую нелинейную систему подать гармонический сигнал, т. е. x(t) = A·sin ωt, то в выходном сигнале будут присутствовать компоненты с частотами ω, 2ω, 3ω, …, nω и т. д. Например, если ограничиться только квадратичным членом, то появятся вторые гармоники, т. к.
y(t) = h1·A·sin ωt + h2·(A sin ωt)² = h1·A·sin ωt + 0,5·h2·А²·sin 2ωt + const.
В реальных преобразователях при подаче гармонического сигнала могут появиться гармоники второго, третьего и более высоких порядков, а также субгармоники (1/n)·ω (рисунок 5).


Для измерения такого вида искажений наиболее широкое распространение получили методы измерений уровня дополнительных гармоник в выходном сигнале (обычно только второй и третьей).
В соответствии с международными и отечественными стандартами производится запись АЧХ второй и третьей гармоники в заглушенных камерах и измеряется коэффициент гармонических искажений n-порядка:
KГn = pfn / pср·100%
где pfn-- среднеквадратичное значение звукового давления, соответствующее n-гармонической составляющей. По нему рассчитывается общий коэффициент гармонических искажений:
Кг = (KГ2² + KГ3² +KГ4² +KГ5² + ...)1/2
Например, в соответствии с требованиями МЭК 581-7, для акустических систем класса Hi-Fi полный коэффициент гармонических искажений не должен превышать 2% в диапазоне частот 250…1000 Гц и 1% в диапазоне свыше 2000 Гц. Пример зависимости коэффициента гармонических искажений для низкочастотного громкоговорителя диаметром 300 мм (12") от частоты для разных значений входного напряжения, меняющегося от 10 до 32 В, показан на рисунке 6.


Зависимость КНИ от частоты для разных значений входного напряжения

Следует отметить, что слуховая система чрезвычайно чувствительна к наличию нелинейных искажений в акустических преобразователях. «Заметность» гармонических составляющих зависит от их порядка, в частности, к нечетным составляющим слух наиболее чувствителен. При многократном прослушивании восприятие нелинейных искажений обостряется, особенно при прослушивании отдельных музыкальных инструментов. Частотная область максимальной чувствительности слуха к этим видам искажений находится в пределах 1…2 кГц, где порог чувствительности составляет 1…2%.
Однако такой метод оценки нелинейности не позволяет учесть все виды нелинейных продуктов, возникающих в процессе преобразования реального звукового сигнала. В результате может быть ситуация, когда акустическая система с КНИ в 10% может субъективно оцениваться выше по качеству звучания, чем система с КНИ в 1%, из-за влияния высших гармоник.
Поэтому поиски других способов оценки нелинейных искажений и их корреляции с субъективными оценками все время продолжаются. Особенно актуально это в настоящее время, когда уровни нелинейных искажений значительно снизились и для дальнейшего их снижения необходимо знание реальных порогов слышимости, поскольку уменьшение нелинейных искажений в аппаратуре требует значительных экономических затрат.
Наряду с измерениями гармонических составляющих в практике проектирования и оценки электроакустической аппаратуры используются методы измерений интермодуляционных искажений. Методика измерений представлена ГОСТ 16122-88 и МЭК 268-5 и основана на подведении к излучателю двух синусоидальных сигналов с частотами f1 и f2, где f1 < 1/8·f2 (при соотношении амплитуд 4:1) и измерении амплитуд звукового давления комбинационных тонов: f2 ± (n - 1)·f1, где n = 2, 3.
Суммарный коэффициент интермодуляционных искажений определяется в этом случае как:
Ким = (ΣnКимn²)1/2
где Ким = / pcp.
Причиной возникновения интермодуляционных искажений служит нелинейная связь между выходным и входным сигналами, т. е. нелинейная передаточная характеристика. Если на вход такой системы подать два гармонических сигнала, то в выходном сигнале будут содержаться гармоники высших порядков и суммарно-разностные тоны различных порядков.
Вид выходного сигнала с учетом нелинейностей более высоких порядков показан на рисунке 5.


Продукты нелинейных искажений в громкоговорителях

Характеристики зависимости коэффициента интермодуляционных искажений от частоты для низкочастотного громкоговорителя со звуковыми катушками различной длины показаны на рисунке 7 (а - для более длинной катушки, б - для более короткой).


Зависимость коэффициента интермодуляционных искажений (IMD) от частоты для громкоговорителя с длинной (а) и короткой (б) катушкой

Как сказано выше, в соответствии с международными стандартами в аппаратуре измеряются только коэффициенты интермодуляционных искажений второго и третьего порядков. Измерения интермодуляционных искажений могут быть информативнее, чем гармонические, поскольку являются более чувствительным критерием нелинейности. Однако, как показали эксперименты, выполненные в работах Р. Геддса (доклад на 115 конгрессе AES в Нью-Йорке), четкой корреляции между субъективными оценками качества акустических преобразователей и уровнем интермодуляционных искажений установить не удалось - слишком большой разброс в полученных результатах (как видно из рисунка 8).


Связь субъективных оценок с величиной коэффициента интермодуляционных искажений (IMD)

В качестве нового критерия для оценки нелинейных искажений в электроакустической аппаратуре был предложен многотоновый метод, история и способы применения которого детально исследованы в работах А. Г. Войшвилло и др. (имеются статьи в JAES и доклады на конгрессах AES). В этом случае в качестве входного сигнала используется набор гармоник от 2-й до 20-й с произвольным распределением амплитуд и логарифмическим распределением частот в диапазоне от 1 до 10 кГц. Распределение фаз гармоник оптимизируется с целью минимизации пик-фактора многотонового сигнала. Общий вид входного сигнала и его временная структура показаны на рисунках 9а и 9б.


Спектральный (а) и временной (б) вид многотонового сигнала

В выходном сигнале выделяются гармонические и интермодуляционные искажения всех порядков. Пример таких искажений для громкоговорителя показан на рисунке 10.


Общие продукты нелинейных искажений при применении многотонового сигнала

Многотоновый сигнал по своей структуре гораздо ближе к реальным музыкальным и речевым сигналам, он позволяет выделить значительно больше различных продуктов нелинейных искажений (в первую очередь интермодуляционных) и лучше коррелирует с субъективными оценками качества звучания акустических систем. С увеличением числа составляющих гармоник данный метод позволяет получить все более детальную информацию, но при этом увеличиваются вычислительные затраты. Применение этого метода требует дальнейших исследований, в частности разработки критериев и допустимых норм на выделенные продукты нелинейных искажений с позиций их субъективных оценок.
Для оценки нелинейных искажений в акустических преобразователях используются и другие методы, например ряды Вольтера.
Однако все они не обеспечивают четкой связи между оценкой качества звучания преобразователей (микрофонов, громкоговорителей, акустических систем и др.) и уровнем нелинейных искажений в них, измеренных любыми из известных объективных методов. Поэтому представляет значительный интерес новый психоакустический критерий, предложенный в докладе Р. Геддса на последнем конгрессе AES. Он исходил из соображений, что любой параметр можно оценивать в объективных единицах, а можно и по субъективным критериям, например, температуру можно измерить в градусах, а можно в ощущениях: холодно, тепло, жарко. Громкость звука можно оценить по уровню звукового давления в дБ, а можно - в субъективных единицах: фон, сон. Поиск аналогичных критериев для нелинейных искажений и был целью его работы.
Как известно из психоакустики, слуховой аппарат является принципиально нелинейной системой, причем его нелинейность проявляется как на больших, так и на малых уровнях сигнала. Причинами нелинейности служат гидродинамические процессы в улитке уха, а также нелинейная компрессия сигнала за счет специального механизма удлинения внешних волосковых клеток. Это приводит к появлению субъективных гармоник и комбинационных тонов при прослушивании гармонических или суммарных гармонических сигналов, уровень которых может достигать 15…20% от уровня входного сигнала. Поэтому анализ восприятия продуктов нелинейных искажений, создаваемых в электроакустических преобразователях и каналах передачи, в такой сложной нелинейной системе, как слуховой аппарат, является серьезной проблемой.
Другое принципиально важное свойство слуховой системы - это эффект маскировки, заключающийся в изменении порогов слуха к одному сигналу в присутствии другого (маскера). Это свойство слуховой системы широко используется в современных системах сжатия звуковой информации при ее передаче по различным каналам (стандарты MPEG). Успехи, достигнутые в уменьшении объемов передаваемой информации за счет сжатия с использованием свойств слуховой маскировки, заставляют предположить, что эти эффекты имеют огромное значение также для восприятия и оценки нелинейных искажений.
Установленные законы слуховой маскировки позволяют утверждать, что:
- маскировка высокочастотных составляющих (находящихся выше частоты сигнала-маскера) происходит значительно сильнее, чем в сторону низких частот;
- маскировка сильнее проявляется для ближайших частот (локальный эффект, рисунок 11);
- с увеличением уровня сигнала-маскера зона его воздействия расширяется, она становится все более асимметричной, происходит ее сдвиг в сторону высоких частот.

Отсюда можно предположить, что при анализе нелинейных искажений в слуховой системе соблюдаются следующие правила:
- продукты нелинейных искажений выше основной частоты менее важны для восприятия (они лучше маскируются), чем низкочастотные компоненты;
- чем ближе к основному тону располагаются продукты нелинейных искажений, тем больше вероятность, что они станут незаметными и не будут иметь субъективного значения;
- дополнительные нелинейные компоненты, возникающие за счет нелинейности, могут быть гораздо важнее для восприятия при низких уровнях сигнала, чем при высоких. Это показано на рисунке 11.


Эффекты маскировки

Действительно, с повышением уровня основного сигнала зона его маскировки расширяется, и все больше продуктов искажений (гармоник, суммарных и разностных искажений и др.) попадает в нее. При низких уровнях эта зона ограничена, поэтому продукты искажений высоких порядков будут более слышимы.
При измерениях нелинейных продуктов на чистом тоне в преобразователях возникают, в основном, гармоники с частотой выше основного сигнала n f. Однако в громкоговорителях могут возникать и низкие гармоники с частотами (1/n)·f. При измерениях интермодуляционных искажений (как с помощью двух сигналов, так и с помощью многотоновых сигналов) возникают продукты искажений суммарно-разностные - как выше, так и ниже основных сигналов m·f1 ± n·f2.
Учитывая перечисленные свойства слуховой маскировки, можно сделать следующие выводы: продукты нелинейных искажений более высоких порядков могут быть более слышимы, чем продукты более низких порядков. Например, практика проектирования громкоговорителей показывает, что гармоники с номерами выше пятой, воспринимаются на слух гораздо неприятнее, чем вторая и третья, даже если их уровни гораздо меньше, чем у первых двух гармоник. Обычно их появление воспринимается как дребезжание и приводит к отбраковке громкоговорителей в производстве. Появление субгармоник с половинной и ниже частотами также сразу замечается слуховой системой как призвук, даже на очень малых уровнях.
Если порядок нелинейности низкий, то с увеличением уровня входного сигнала дополнительные гармоники могут быть замаскированы в слуховой системе и не восприниматься как искажения, что подтверждается практикой проектирования электроакустических преобразователей. Акустические системы с уровнем нелинейных искажений 2% могут достаточно высоко оцениваться слушателями. В то же время хорошие усилители должны иметь уровень искажений 0,01% и ниже, что, по-видимому, связано с тем, что акустические системы создают продукты искажений низких порядков, а усилители - гораздо более высоких.
Продукты нелинейных искажений, которые возникают на низких уровнях сигнала, могут быть гораздо более слышимыми, чем на высоких уровнях. Это, казалось бы, парадоксальное утверждение также может иметь значение для практики, поскольку нелинейные искажения в электроакустических преобразователях и трактах могут возникать и при малых уровнях сигналов.
Исходя из вышесказанных соображений, Р. Геддс предложил новый психоакустический критерий для оценки нелинейных искажений, который должен был удовлетворять следующим требованиям: быть чувствительнее к искажениям более высокого порядка и иметь большее значение для низких уровней сигнала.
Проблема состояла в том, чтобы показать, что этот критерий больше соответствует субъективному восприятию нелинейных искажений, чем принятые в настоящее время методы оценок: коэффициент нелинейных искажений и коэффициент интермодуляционных искажений на двухтоновом или многотоновом сигналах.
С этой целью была проведена серия субъективных экспертиз, организованная следующим образом: тридцать четыре эксперта с проверенными порогами слуха (средний возраст 21 год) участвовали в большой серии экспериментов по оценке качества звучания музыкальных отрывков (например, мужской вокал с симфонической музыкой), в которые были введены различные виды нелинейных искажений. Выполнено это было путем «свертки» испытываемого сигнала с нелинейными передаточными функциями, свойственными преобразователям различных типов (громкоговорителям, микрофонам, стереотелефонам и др.).
Вначале в качестве стимулов были использованы синусоидальные сигналы, выполнена их «свертка» с различными передаточными функциями и определен коэффициент гармонических искажений. Затем были использованы два синусоидальных сигнала и рассчитаны коэффициенты интермодуляционных искажений. Наконец, прямо по заданным передаточным функциям был определен вновь предложенный коэффициент Gm. Расхождения оказались очень значительными: например, для одной и той же передаточной функции КНИ равен 1%, Ким - 2,1%, Gm - 10,4%. Такое различие физически объяснимо, так как Ким и Gm учитывают гораздо больше продуктов нелинейных искажений высоких порядков.
Слуховые эксперименты были выполнены на стереотелефонах с диапазоном 20 Гц…16 кГц, чувствительностью 108 дБ, макс. SPL 122 дБ. Субъективная оценка ставилась по семибальной шкале для каждого музыкального фрагмента, от «много лучше», чем опорный фрагмент (т. е. музыкальный отрывок, «свернутый» с линейной передаточной функцией), до «много хуже». Статистическая обработка результатов слуховой оценки позволила установить достаточно высокий коэффициент корреляции между средними значениями субъективных оценок и значением коэффициента Gm, который оказался равным 0,68. В тоже время для КНИ он составлял 0,42, а для Ким - 0,34 (для данной серии экспериментов).
Таким образом, связь предложенного критерия с субъективными оценками качества звучания оказалась существенно выше, чем у других коэффициентов (рисунок 12).


Связь коэффициента Gm с субъективными оценками

Результаты экспериментов показали также, что электроакустический преобразователь, у которого Gm меньше 1%, может считаться вполне удовлетворительным по качеству звучания в том смысле, что нелинейные искажения в нем практически неслышимы.
Разумеется, этих результатов еще недостаточно, чтобы заменить предложенным критерием имеющиеся в стандартах параметры, такие как коэффициент гармонических искажений и коэффициент интермодуляционных искажений, однако если результаты подтвердятся при дальнейших экспериментах, то, возможно, именно так и произойдет.
Поиски других новых критериев также активно продолжаются, поскольку несоответствие имеющихся параметров (особенно коэффициента гармонических искажений, оценивающего только две первые гармоники) субъективно воспринимаемому качеству звучания становится все более очевидным по мере улучшения общего качества аудиоаппаратуры.
По-видимому, дальнейшие пути решения этой проблемы пойдут в направлении создания компьютерных моделей слуховой системы, с учетом нелинейных процессов и эффектов маскировки в ней. В этой области работает Институт коммуникационной акустики в Германии под руководством Д. Блауэрта, о котором уже было написано в статье, посвященной 114 конгрессу AES. С помощью этих моделей можно будет оценивать слышимость различных видов нелинейных искажений в реальных музыкальных и речевых сигналах. Однако, пока они еще не созданы, оценки нелинейных искажений в аппаратуре будут производиться с помощью упрощенных методов, максимально приближенных к реальным слуховым процессам.

Из курсов ТЭЦ и ТЭС мы знаем, что электрические цепи делятся на линейные, нелинейные и параметрические. Последние два типа цепей отличаются от линейных тем свойством, что могут создавать новые гармонические составляющие в спектре отклика по сравнению со спектром входного сигнала.

Нелинейное преобразование сигнала может быть желательным и полезным (например, при детектировании), а может быть вредным, сопутствующим (например, в усилителях). В этом случае, когда это явление не используется в устройстве, содержащем данную цепь, оно весьма нежелательно, так как часто создает вредные побочные эффекты. Поэтому форма сигнала на выходе этих устройств будет отличаться от формы сигнала на их входе. Изменение формы сигнала называется нелинейным искажением.

Причина нелинейных искажений заключается в том, что при подаче на вход гармонического сигнала частотой f на выходе появляется сигнал, содержащий постоянную составляющую, основную частоту и высшие гармоники с частотами 2f, 3f, 4f и т.д. Амплитуды высших гармоник с увеличением их номеров быстро убывают. Определяющими обычно бывают вторая и третья гармоники.

Источником нелинейных искажений являются элементы цепей, у которых ток не пропорционален приложенному напряжению, т.е. имеющие нелинейную вольтамперную характеристику. Это, как правило, электронные лампы, транзисторы, диоды, катушки c ферромагнитными сердечниками.

Необходимость измерения нелинейных искажений связана с исследованием параметров усилителей и генераторов синусоидальных колебаний.

Нелинейные искажения представляют собой сложной явление, зависящее от многих параметров: состава электрической цепи, ее амплитудно-частотной характеристики, формы сигнала, его амплитуды и т. п. С увеличением амплитуды нелинейные искажения увеличиваются. Обычно при увеличении частоты нелинейные искажения в усилителе также увеличиваются.

Нелинейные искажения оцениваются коэффициентом гармоник К Г , а также коэффициентом нелинейных искажений К Н .

Коэффициент гармоник К Г определяется как отношение среднеквадратического (действующего) значения напряжения суммы всех гармоник сигнала, кроме первой, к среднеквадратическому (действующему) значению напряжения первой гармоники по формуле (34):

где U 1 , U 2 , U 3 , … Un – среднеквадратические значения напряжения отдельных гармоник выходного сигнала.

Коэффициент К Г характеризует отличие формы данного периоди­ческого сигнала от гармонической.

Нетрудно увидеть, что при отсутствии в выходном сигнале высших гармоник, К Г = 0, т.е. синусоидальный сигнал со входа на выход передается без искажений.

Коэффициент нелинейных искажений Кн определяется, как отношение среднеквадратического (действующего) значения напряжения высших гармоник к среднеквадратическому (действующему) значению всего сигнала по формуле (35):

Самыми распространенными одночастотными методами измерения являются:

1. Метод подавления основной гармоники.

2. Метод анализа напряжений.

Измерение нелинейных искажений методом подавления основной гармоники

В соответствии с формулой для определения коэффициента нелинейных иска­жений необходимо измерить действующее значение исследуемого сигнала и дейст­вующее значение высших гармонических составляющих.

Существуют специальные приборы, измеряющие коэффициент нелинейных искажений, называемые измерителями нелинейных искажений.

Упрощенная структурная схема аналогового измерителя нелинейных искажений приведена на рисунке 1.

Рисунок 1 – Упрощенная структурная схема аналогового измерителя нелинейных искажений

Схема прибора сод ержит входное устройство, перестраиваемый режекторный фильтр и квадратичный вольтметр с аттенюатором.

Принцип действия прибора основан на раздельном измерении среднеквадратического значения напряжения исследуемого сигнала и среднеквадратического значения напряжения высших гармоник этого же сигнала.

Входное устройство обеспечивает необходимую величину входного сопротивления и служит для согласования измерительного прибора с источником исследуемого сигнала.

Режекторный фильтр в идеальном случае должен иметь бесконечно большое затухание на частоте первой (основной) гармоники и нулевое затухание на частотах высших гармоник. Обычно режекторный фильтр реализуется с помощью мостовой схемы Вина, состоящей из резисторов и конденсаторов (см. рисунок 2).

Измерение нелинейных искажений методом анализа напряжений

Измерение нелинейных искажений методом анализа напряжений (по отдельным гармоникам) осуществляется с помощью избирательного измерителя уровней (ИИУ).

Схема измерения коэффициента гармоник с помощью ИИУ приведена на рисунке 3, и состоит из генератора, ФНЧ, исследуемого четырехполюсника, ИИУ.


Рисунок 3 – Измерение коэффициента гармоник методом анализа напряжения

ИИУ подключается к выходу исследуемого объекта. При одночастотном синусоидальном сигнале для контроля напряжения любой частоты, оказавшейся в нем в результате нелинейных искажений. При этом ИИУ последовательно настраивается на первую, вторую, третью гармоники (а при необходимости и на более высокие), напряжение (уровень) которых нужно проконтролировать. Таким образом, отдельно измеряются уровни всех интересующих гармоник исследуемого сигнала, и находится затухание нелинейности для каждой из них, при этом берется разность уровня первой гармоники и каждой из контролировавшихся частот:

А Кn = L 1 – L n

Основным параметром электронного усилителя является коэффициент усиления К. Коэффициент усиления мощности (напряжения, тока) определяется отношением мощности (напряжения, тока) выходного сигнала к мощности (напряжению, току) входного и характеризует усилительные свойства схемы. Выходной и входной сигналы должны быть выражены в одних и тех же количественных единицах, поэтому коэффициент усиления является безразмерной величиной.

В отсутствие реактивных элементов в схеме, а также при определенных режимах ее работы, когда исключается их влияние, коэффициент усиления является действительной величиной, не зависящей от частоты. В этом случае выходной сигнал повторяет форму входного и отличается от него в К раз только амплитудой. В дальнейшем изложении материала речь пойдет о модуле коэффициента усиления, если нет особых оговорок.

В зависимости от требований, предъявляемых к выходным параметрам усилителя переменного сигнала, различают коэффициенты усиления:

а) по напряжению, определяемый как отношение амплитуды переменной составляющей выходного напряжения к амплитуде переменной составляющей входного, т. е.

б) по току, который определяется отношением амплитуды переменной составляющей выходного тока к амплитуде переменной составляющей входного:

в) по мощности

Так как , то коэффициент усиления по мощности можно определить следующим образом:

При наличии реактивных элементов в схеме (конденсаторов, индуктивностей) коэффициент усиления следует рассматривать как комплексную величину

где m и n - действительная и мнимая составляющие, зависящие от частоты входного сигнала:

Положим, что коэффициент усиления К не зависит от амплитуды входного сигнала. В этом случае при подаче на вход усилителя синусоидального сигнала выходной сигнал также будет иметь синусоидальную форму, но отличаться от входного по амплитуде в К раз и по фазе на угол .

Периодический сигнал сложной формы согласно теореме Фурье можно представить суммой конечного или бесконечно большого числа гармонических составляющих, имеющих разные амплитуды, частоты и фазы. Так как К - комплексная величина, то амплитуды и фазы гармонических составляющих входного сигнала при прохождении через усилитель изменяются по-разному и выходной сигнал будет отличаться по форме от входного.

Искажения сигнала при прохождении через усилитель, обусловленные зависимостью параметров усилителя от частоты и не зависящие от амплитуды входного сигнала, называются линейными искажениями. В свою очередь, линейные искажения можно разделить на частотные (характеризующие изменение модуля коэффициента усиления К в полосе частот за счет влияния реактивных элементов в схеме); фазовые (характеризующие зависимость сдвига по фазе между выходным и входным сигналами от частоты за счет влияния реактивных элементов).

Частотные искажения сигнала можно оценить с помощью амплитудно-частотной характеристики, выражающей зависимость модуля коэффициента усиления по напряжению от частоты. Амплитудно-частотная характеристика усилителя в общем виде представлена на рис. 1.2. Рабочий диапазон частот усилителя, внутри которого коэффициент усиления можно считать с известной степенью точности постоянным, лежит между низшей и высшей граничными частотами и называется полосой пропускания. Граничные частоты определяют уменьшение коэффициента усиления на заданную величину от своего максимального значения на средней частоте .

Введя коэффициент частотных искажений на данной частоте ,

где - коэффициент усиления по напряжению на данной частоте, можно с помощью амплитудно-частотной характеристики определить частотные искажения в любом диапазоне рабочих частот усилителя.

Поскольку наибольшие частотные искажения имеем на границах рабочего диапазона, то при расчете усилителя, как правило, задают коэффициенты частотных искажений на низшей и высшей граничных частотах, т. е.

где - соответственно коэффициенты усиления по напряжению на высшей и низшей граничных частотах.

Обычно принимают , т. е. на граничных частотах коэффициент усиления по напряжению уменьшается до уровня 0,707 значения коэффициента усиления на средней частоте. При таких условиях полоса пропускания усилителей звуковой частоты, предназначенных для воспроизведения речи и музыки, лежит в пределах 30-20 000 Гц. Для усилителей, применяемых в телефонии, допустима более узкая полоса пропускания 300-3400 Гц. Для усиления импульсных сигналов необходимо использовать так называемые широкополосные усилители, полоса пропускания которых располагается в диапазоне частот от десятков или единиц герц до десятков или даже сотен мегагерц.

Для оценки качества усилителя часто пользуются параметром

Для широкополосных усилителей , поэтому

Противоположностью широкополосных усилителей являются избирательные усилители, назначение которых состоит в усилении сигналов в узкой полосе частот (рис. 1.3).

Усилители, предназначенные для усиления сигналов со сколь угодно малой частотой, называются усилителями постоянного тока. Из определения ясно, что низшая граничная частота полосы пропускания такого усилителя равна нулю. Амплитудно-частотная характеристика усилителя постоянного тока дана на рис. 1.4.

Фазочастотная характеристика показывает, как меняется угол сдвига фаз между выходным и входным сигналами при изменении частоты и определяет фазовые искажения.

Фазовые искажения отсутствуют при линейном характере фазочастотной характеристики (пунктирная линия на рис. 1.5), так как в этом случае каждая гармоническая составляющая входного сигнала при прохождении через усилитель сдвигается по времени на один и тот же интервал . Угол сдвига фаз между входным и выходным сигналами при этом пропорционален частоте

где - коэффициент пропорциональности, определяющий угол наклона характеристики к оси абсцисс.

Фазочастотная характеристика реального усилителя представлена на рис. 1.5 сплошной линией. Из рис. 1.5 видно, что в пределах полосы пропускания усилителя фазовые искажения минимальны, однако резко возрастают в области граничных частот.

Если коэффициент усиления зависит от амплитуды входного сигнала, то имеют место нелинейные искажения усиливаемого сигнала, обусловленные наличием в усилителе элементов с нелинейными вольт-амперными характеристиками.

Задавая закон изменения можно проектировать нелинейные усилители с определенными свойствами. Пусть коэффициент усиления определяется зависимостью , где - коэффициент пропорциональности.

Тогда при подаче на вход усилителя синусоидального входного сигнала выходной сигнал усилителя

где - амплитуда и частота входного сигнала.

Первая гармоническая составляющая в выражении (1.6) представляет собой полезный сигнал, остальные являются результатом нелинейных искажений.

Нелинейные искажения можно оценить с помощью так называемого коэффициента гармоник

где - амплитудные значения соответственно мощности, напряжения и тока гармонических составляющих.

Индекс определяет номер гармоники. Обычно учитывают только вторую и третью гармоники, так как амплитудные значения мощностей более высоких гармоник сравнительно малы.

Линейные и нелинейные искажения характеризуют точность воспроизведения формы входного сигнала усилителем.

Амплитудная характеристика четырехполюсников, состоящих только из линейных элементов, при любом значении теоретически является наклонной прямой. Практически же максимальное значение ограничивается электрической прочностью элементов четырехполюсника. Амплитудная характеристика усилителя, выполненного на электронных приборах (рис. 1.6), в принципе нелинейна, однако может содержать участки ОА, где кривая носит приблизительно линейный характер с большой степенью точности. Рабочий диапазон входного сигнала не должен выходить за пределы линейного участка (ОА) амплитудной характеристики усилителя, иначе нелинейные искажения превысят допустимый уровень.

Входного сигнала, к среднеквадратичной сумме всех спектральных компонент входного сигнала

texvc не найден; См. math/README - справку по настройке.): K_\mathrm{H} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{ \sqrt{U_1^2+U_2^2 + U_3^2 + \ldots + U_n^2+ \ldots }}

КНИ - безразмерная величина и выражается обычно в процентах. Кроме КНИ, уровень нелинейных искажений часто выражают и через коэффициент гармонических искажений (КГИ или K Г ) - величину, выражающую степень нелинейных искажений устройства (усилителя и др.) и равную отношению среднеквадратичного напряжения суммы высших гармоник сигнала, кроме первой, к напряжению первой гармоники при воздействии на вход устройства синусоидального сигнала.

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{ \sqrt{U_2^2 + U_3^2 + U_4^2 + \ldots + U_n^2+ \ldots } }{U_1}

КГИ, так же, как и КНИ, выражается в процентах и связан с ним соотношением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} = \frac{K_\mathrm{H}}{\sqrt{1 - K^2_\mathrm{H}}}

Очевидно, что для малых значений КГИ и КНИ совпадают в первом приближении. Интересно, что в западной литературе обычно пользуются КГИ, тогда как в отечественной литературе традиционно предпочитают КНИ.

Важно также отметить, что КНИ и КГИ - это лишь количественные меры искажений , но не качественные. Например, значение КНИ (КГИ), равное 3% ничего не говорит о характере искажений, т.е. о том, как в спектре сигнала распределены гармоники, и каков, например, вклад НЧ или ВЧ составляющих. Так, в спектрах ламповых УМЗЧ обычно преобладают низшие гармоники, что часто воспринимается на слух как «тёплый ламповый звук», а в транзисторных УМЗЧ искажения более равномерно распределены по спектру, и он более плоский, что часто воспринимается как «типичный транзисторный звук» (хотя спор этот во многом зависит от личных ощущений и привычек человека).

Примеры расчёта КГИ

Для многих стандартных сигналов КГИ может быть подсчитан аналитически. Так, для симметричного прямоугольного сигнала (меандра)

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{8}-1\,}\approx \, 0.483\,=\,48.3\%

Идеальный пилообразный сигнал имеет КГИ

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^2}{6}-1\,}\approx \, 0.803\,=\,80.3\%

а симметричный треугольный

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \,\sqrt{\frac{\,\pi^4}{96}-1\,}\approx\,0.121\,= \, 12.1\%

Несимметричный прямоугольный импульсный сигнал с соотношением длительности импульса к периоду, равному μ обладает КГИ

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu)=\sqrt{\frac{\mu(1-\mu)\pi^2\,}{2\sin^2\pi\mu}-1\;}\,\qquad 0<\mu<1 ,

который достигает минимума (≈0.483) при μ =0.5, т.е. тогда, когда сигнал становится симметричным меандром. Кстати, фильтрованием можно добиться значительного снижения КГИ этих сигналов, и таким образом получать сигналы, близкие по форме к синусоидальным. Например, симметричный прямоугольный сигнал (меандр) с изначальным КГИ в 48.3%, после прохождения через фильтр Баттерворта второго порядка (с частотой среза, равной частоте основной гармоники) имеет КГИ уже в 5.3%, а если фильтр четвёртого порядка - то КГИ=0.6%. Следует отметить, что чем более сложный сигнал на входе фильтра и чем более сложный сам фильтр (а точнее, его передаточная функция), тем более громоздкими и трудоёмкими будут вычисления КГИ. Так, стандартный пилообразный сигнал, прошедший через фильтр Баттерворта первого порядка, имеет КГИ уже не 80.3% а 37.0%, который в точности даётся следующим выражением

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma} \,= \, \sqrt{\frac{\,\pi^2}{3} - \pi\,\mathrm{cth}\,\pi\,}\,\approx\,0.370\,= \, 37.0\%

А КГИ того же сигнала, прошедшего через такой же фильтр, но второго порядка, уже будет даваться достаточно громоздкой формулой

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,= \sqrt{\pi\,\frac{\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\cdot\,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}} -\,\mathrm{ctg}\,\dfrac{\pi}{\sqrt{2\,}} - \,\mathrm{cth}\,\dfrac{\pi}{\sqrt{2\,}}\;} {\sqrt{2\,}\left(\mathrm{ctg}^{2\!}\dfrac{\pi}{\sqrt{2\,}} +\,\mathrm{cth}^{2\!}\dfrac{\pi}{\sqrt{2\,}}\!\right)} \,+\,\frac{\,\pi^2}{3} \,-\, 1\;} \;\approx\;0.181\,= \, 18.1\%

Если же рассматривать вышеупомянутый несимметричный прямоугольный импульсный сигнал, прошедший через фильтр Баттерворта p -ого порядка, то тогда

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): K_{\Gamma}\,(\mu, p)= \csc\pi\mu\,\cdot \!\sqrt{\mu(1-\mu)\pi^2-\,\sin^2\!\pi\mu\, -\,\frac{\,\pi}{2}\sum_{s=1}^{2p} \frac{\,\mathrm{ctg}\,\pi z_s}{z_s^2} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\, +\,\frac{\,\pi}{2}\,\mathrm{Re}\sum_{s=1}^{2p} \frac{e^{i\pi z_s(2\mu-1)}}{z_s^2\sin \pi z_s} \prod\limits_{\scriptstyle l=1\atop\scriptstyle l\neq s}^{2p}\!\frac{1}{\,z_s-z_l\,}\,}

где 0<μ <1 и

Невозможно разобрать выражение (Выполняемый файл texvc не найден; См. math/README - справку по настройке.): z_l\equiv \exp{\frac{i\pi(2l-1)}{2p}}\, \qquad l=1, 2,\ldots, 2p

подробности вычислений - см. Ярослав Благушин и Эрик Моро .

Измерения

  • В низкочастотном (НЧ) диапазоне для измерения КНИ применяются измерители нелинейных искажений (измерители коэффициента гармоник).
  • На более высоких частотах (СЧ, ВЧ) используют косвенные измерения с помощью анализаторов спектра или селективных вольтметров .

Типовые значения КНИ и КГИ

Ниже приведены некоторые типовые значения для КНИ, и в скобках, для КГИ.

См. также

Напишите отзыв о статье "Коэффициент нелинейных искажений"

Литература, ссылки, примечания

  • Справочник по радиоэлектронным устройствам : В 2-ух томах; Под ред. Д. П. Линде - М.: Энергия,
  • Горохов П. К. Толковый словарь по радиоэлектронике. Основные термины - М: Рус. яз.,

Дополнительные ссылки

Отрывок, характеризующий Коэффициент нелинейных искажений

Я застыла в настоящем шоке. Почему-то такой невероятный факт никак не хотел укладываться в моей ошарашенной голове...
– Бабушка?.. – только и смогла произнести я.
Стелла кивнула, очень довольная произведённым эффектом.
– Как же так? Поэтому она и помогла тебе их найти? Она знала?!.. – тысячи вопросов одновременно бешено крутились в моём взбудораженном мозгу, и мне казалось, что я никак не успею всего меня интересующего спросить. Я хотела знать ВСЁ! И в то же время прекрасно понимала, что «всего» мне никто не собирается говорить...
– Я наверное потому его и выбрала, что чувствовала что-то. – Задумчиво сказала Стелла. – А может это бабушка навела? Но она никогда не признается, – махнула рукой девчушка.
– А ОН?.. Он тоже знает? – только и смогла спросить я.
– Ну, конечно же! – рассмеялась Стелла. – А почему тебя это так удивляет?
– Просто она уже старенькая... Ему это должно быть тяжело, – не зная, как бы поточнее объяснить свои чувства и мысли, сказала я.
– О, нет! – опять засмеялась Стелла. – Он был рад! Очень-очень рад. Бабушка дала ему шанс! Никто бы не смог ему в этом помочь – а она смогла! И он увидел её опять... Ой, это было так здорово!
И тут только наконец-то я поняла, о чём она говорит... Видимо, бабушка Стеллы дала своему бывшему «рыцарю» тот шанс, о котором он так безнадёжно мечтал всю свою длинную, оставшуюся после физической смерти, жизнь. Ведь он так долго и упорно их искал, так безумно хотел найти, чтобы всего лишь один только раз мог сказать: как ужасно жалеет, что когда-то ушёл... что не смог защитить... что не смог показать, как сильно и беззаветно их любил... Ему было до смерти нужно, чтобы они постарались его понять и смогли бы как-то его простить, иначе ни в одном из миров ему незачем было жить...
И вот она, его милая и единственная жена, явилась ему такой, какой он помнил её всегда, и подарила ему чудесный шанс – подарила прощение, а тем же самым, подарила и жизнь...
Тут только я по-настоящему поняла, что имела в виду Стеллина бабушка, когда она говорила мне, как важен подаренный мною «ушедшим» такой шанс... Потому что, наверное, ничего страшнее на свете нет, чем остаться с не прощённой виной нанесённой обиды и боли тем, без кого не имела бы смысла вся наша прошедшая жизнь...
Я вдруг почувствовала себя очень усталой, как будто это интереснейшее, проведённое со Стеллой время отняло у меня последние капельки моих оставшихся сил... Я совершенно забыла, что это «интересное», как и всё интересное раньше, имело свою «цену», и поэтому, опять же, как и раньше, за сегодняшние «хождения», тоже приходилось платить... Просто все эти «просматривания» чужих жизней являлись огромной нагрузкой для моего бедного, ещё не привыкшего к этому, физического тела и, к моему великому сожалению, меня пока что хватало очень ненадолго...
– Ты не волнуйся, я тебя научу, как это делать! – как бы прочитав мои грустные мысли, весело сказала Стелла.
– Делать, что? – не поняла я.
– Ну, чтобы ты могла побыть со мной дольше. – Удивившись моему вопросу, ответила малышка. – Ты живая, поэтому тебе и сложно. А я тебя научу. Хочешь погулять, где живут «другие»? А Гарольд нас здесь подождёт. – Лукаво сморщив маленький носик, спросила девочка.
– Прямо сейчас? – очень неуверенно спросила я.
Она кивнула... и мы неожиданно куда-то «провалились», «просочившись» через мерцающую всеми цветами радуги «звёздную пыль», и оказались уже в другом, совершенно не похожем на предыдущий, «прозрачном» мире...
* * *

Ой, ангелы!!! Смотри, мамочка, Ангелы! – неожиданно пропищал рядом чей-то тоненький голосок.
Я ещё не могла очухаться от необычного «полёта», а Стелла уже мило щебетала что-то маленькой кругленькой девчушке.
– А если вы не ангелы, то почему вы так сверкаете?.. – искренне удивившись, спросила малышка, и тут же опять восторженно запищала: – Ой, ма-а-амочки! Какой же он красивый!..
Тут только мы заметили, что вместе с нами «провалилось» и последнее «произведение» Стеллы – её забавнейший красный «дракончик»...

Светлана в 10 лет

– Это... что-о это? – аж с придыхом спросила малышка. – А можно с ним поиграть?.. Он не обидится?
Мама видимо мысленно её строго одёрнула, потому что девочка вдруг очень расстроилась. На тёплые коричневые глазки навернулись слёзы и было видно, что ещё чуть-чуть – и они польются рекой.
– Только не надо плакать! – быстро попросила Стелла. – Хочешь, я тебе сделаю такого же?
У девочки мгновенно засветилась мордашка. Она схватила мать за руку и счастливо заверещала:
– Ты слышишь, мамочка, я ничего плохого не сделала и они на меня совсем не сердятся! А можно мне иметь такого тоже?.. Я, правда, буду очень хорошей! Я тебе очень-очень обещаю!
Мама смотрела на неё грустными глазами, стараясь решить, как бы правильнее ответить. А девочка неожиданно спросила:
– А вы не видели моего папу, добрые светящиеся девочки? Он с моим братиком куда-то исчез...
Стелла вопросительно на меня посмотрела. И я уже заранее знала, что она сейчас предложит...
– А хотите, мы их поищем? – как я и думала, спросила она.
– Мы уже искали, мы здесь давно. Но их нет. – Очень спокойно ответила женщина.
– А мы по-другому поищем, – улыбнулась Стелла. – Просто подумайте о них, чтобы мы смогли их увидеть, и мы их найдём.
Девочка смешно зажмурилась, видимо, очень стараясь мысленно создать картинку своего папы. Прошло несколько секунд...
– Мамочка, а как же так – я его не помню?.. – удивилась малышка.
Такое я слышала впервые и по удивлению в больших Стеллиных глазах поняла, что для неё это тоже что-то совершенно новенькое...
– Как так – не помнишь? – не поняла мать.
– Ну, вот смотрю, смотрю и не помню... Как же так, я же его очень люблю? Может, и правда его больше нет?..
– Простите, а вы можете его увидеть? – осторожно спросила у матери я.
Женщина уверенно кивнула, но вдруг что-то в её лице изменилось и было видно, что она очень растерялась.
– Нет... Я не могу его вспомнить... Неужели такое возможно? – уже почти испуганно сказала она.
– А вашего сына? Вы можете вспомнить? Или братика? Ты можешь вспомнить своего братика? – обращаясь сразу к обеим, спросила Стелла.
Мама и дочь отрицательно покачали головами.
Обычно такое жизнерадостное, личико Стеллы выглядело очень озабоченным, наверное, никак не могла понять, что же такое здесь происходит. Я буквально чувствовала напряжённую работу её живого и такого необычного мозга.